Benzene Metabolite 1,2,4-Benzenetriol Induces Halogenated DNA and Tyrosines Representing Halogenative Stress in the HL-60 Human Myeloid Cell Line
نویسندگان
چکیده
BACKGROUND Although benzene is known to be myelotoxic and to cause myeloid leukemia in humans, the mechanism has not been elucidated. OBJECTIVES We focused on 1,2,4-benzenetriol (BT), a benzene metabolite that generates reactive oxygen species (ROS) by autoxidation, to investigate the toxicity of benzene leading to leukemogenesis. METHODS After exposing HL-60 human myeloid cells to BT, we investigated the cellular effects, including apoptosis, ROS generation, DNA damage, and protein damage. We also investigated how the cellular effects of BT were modified by hydrogen peroxide (H2O2) scavenger catalase, hypochlorous acid (HOCl) scavenger methionine, and 4-aminobenzoic acid hydrazide (ABAH), a myeloperoxidase (MPO)-specific inhibitor. RESULTS BT increased the levels of apoptosis and ROS, including superoxide (O2•-), H2O2, HOCl, and the hydroxyl radical (•OH). Catalase, ABAH, and methionine each inhibited the increased apoptosis caused by BT, and catalase and ABAH inhibited increases in HOCl and •OH. Although BT exposure increased halogenated DNA, this increase was inhibited by catalase, methionine, and ABAH. BT exposure also increased the amount of halogenated tyrosines; however, it did not increase 8-oxo-deoxyguanosine. CONCLUSIONS We suggest that BT increases H2O2 intracellularly; this H2O2 is metabolized to HOCl by MPO, and this HOCl results in possibly cytotoxic binding of chlorine to DNA. Because myeloid cells copiously express MPO and because halogenated DNA may induce both genetic and epigenetic changes that contribute to carcinogenesis, halogenative stress may account for benzene-induced bone marrow disorders and myeloid leukemia.
منابع مشابه
Modulation of the toxicity and macromolecular binding of benzene metabolites by NAD(P)H:Quinone oxidoreductase in transfected HL-60 cells.
Benzene is oxidized in the liver to produce a series of hydroxylated metabolites, including hydroquinone and 1,2,4-benzenetriol. These metabolites are activated to toxic and genotoxic species in the bone marrow via oxidation by myeloperoxidase (MPO). NAD(P)H:quinone oxidoreductase (NQO1) is an enzyme capable of reducing the oxidized quinone metabolites and thereby potentially reducing their tox...
متن کاملBenzene induces cytotoxicity without metabolic activation.
OBJECTIVES Benzene has been consistently associated with hematological disorders, including acute myeloid leukemia and aplastic anemia, but the mechanisms causing these disorders are still unclear. Various metabolites of benzene lead to toxicity through the production of reactive oxygen species (ROS), the inhibition of topoisomerase and DNA damage. However, benzene itself is considered to have ...
متن کاملHuman DNA damage induced by 1,2,4-benzenetriol, a benzene metabolite.
Reactivities of benzene metabolites (phenol, catechol, hydroquinone, 1,4-benzoquinone, 1,2,4-benzenetriol) and related polyphenols (resorcinol, pyrogallol, phloroglucinol) with DNA were investigated by a DNA sequencing technique using 32P 5'-end-labeled DNA fragments obtained from human c-Ha-ras-1 protooncogene, and the reaction mechanism was studied by UV-visible and electron-spin resonance sp...
متن کاملEnhancement of myeloid cell growth by benzene metabolites via the production of active oxygen species.
In low concentrations, benzene and its metabolite hydroquinone are known to have diverse biological effects on cells, including the synergistic stimulation with GM-CSF of hematopoietic colony formation in vitro, stimulation of granulocytic differentiation in vitro and in vivo, and general suppression of hematopoiesis in vivo. These chemicals are also known to be active in the induction of activ...
متن کاملBenzene metabolite, 1,2,4-benzenetriol, induces micronuclei and oxidative DNA damage in human lymphocytes and HL60 cells.
The triphenolic metabolite of benzene, 1,2,4-benzenetriol (BT), is readily oxidized to its corresponding quinone via a semiquinone radical. During this process, active oxygen species are formed that may damage DNA and other cellular macromolecules. The ability of BT to induce micronuclei (MN) and oxidative DNA damage has been investigated in both human lymphocytes and HL60 cells. An antikinetoc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 120 شماره
صفحات -
تاریخ انتشار 2012